JOURNAL OF CHEMICAL PHYSICS VOLUME 116, NUMBER 13 1 APRIL 2002

Fewest-switches with time uncertainty: A modified trajectory
surface-hopping algorithm with better accuracy for classically
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We present a modification of Tully’s fewest-switch@¥S) trajectory surface-hopping algorithm
(also called molecular dynamics with quantum transitighat is called the fewest-switches with

time uncertainty (FSTU) method. The FSTU method improves the self-consistency of the
fewest-switches algorithm by incorporating quantum uncertainty into the hopping times of
classically forbidden hops. This uncertainty allows an electronic transition that is classically
forbidden at some geometry to occur by hopping at a nearby classically allowed geometry if an
allowed hopping point is reachable within the Heisenberg interval of time uncertainty. The increased
accuracy of the FSTU method is verified using a challenging set of three-body, two-state test cases
for which accurate quantum-mechanical results are available. The FSTU method is shown to be
more accurate than the TFS method in predicting total nonadiabatic quenching probabilities and
product branching ratios. @002 American Institute of Physic§DOI: 10.1063/1.1453404

I. INTRODUCTION jectories, and that each trajectory evolves classically under
the influence of a potential energy surface that corresponds
Semiclassical trajectory simulations® have proven |ocally to a single electronic state. Electronic transitions are
useful for modeling electronically nonadiabatic dynamics forincorporated into the classical nuclear dynamics by interrupt-
a wide variety of chemical systenis;*® and we have re- ing the single electronic surface propagation with a series of
cently engaged in a systematic set of studies designed to teisbpping decisions. At a hopping decision, a surface switch
and improve these methods*® Semiclassical trajectory (or hop from the occupied electronic statdo some target
methods are especially interesting because they are readigJectronic statg occurs with a probabilityP} , whereP}! is
applicable to large systemge.g., bacteriorhodopsinfor  usually some function of the quantum-mechanical electronic
which a full quantum dynamical treatment is likely to remain state probability density integrated along the classical trajec-
prohibitively computationally expensive for some time. Be-tory. The TFS algorithm defineBy such that hopping is
fore applying semiclassical methods to large systems, it igninimized in the sense that trajectories hop only when there
advisable to validate them by studying smaller systemss a net flow of electronic state probability density out of the
where benchmarks are available or can be calculated. Fortéccupied state during the time interval between hopping de-
nately, the increased availability of converged quantumcisions. In general, the target state and the occupied state
mechanical calculations for fully three-dimensional atom—may have different potential energies at a surface hop, and
diatom systemi$~141~192%%has provided a useful set of when a trajectory hops successfully the nuclear momentum
benchmark test cases for judging the accuracy of severgd adjusted along some hopping vectofusually the nona-
semiclassical trajectory methdds'*'°1"19722%"%hat have  diabatic coupling vectd®) such that total energy is con-
been proposed. The set of test cases, if carefully designederyed.
also provides a means of systematically improving the semi-  As mentioned above, the TFS method has been applied
classical trajectory approach by identifying the dominant eryith success to a wide variety of chemical systems. How-
rors and developing methods that reduce these errors.  eyer, some limitations and ambiguities in the TFS method
Although many of the existing and newly designed semi-(and surface-hopping methods in gengmaére pointed out
classical trajectory methods show promise, the fewesty the original formulatioA” and have also been discussed
switched**?surface-hoppint®® 591 12:1416-48.2326.2730-40 o o centi®314THere, we focus attention on the problem
algorithm of Tully (called here TFS and elsewhere moleculargf frystrated hopping®~182330:3L41-44rhe TES algorithm
dynamics with quantum transitions, or MDQTas proved  may give a nonzero value 6!l (and therefore may call for
to be surprisingly robust despite its simple 5 gyrface hopat a geometry along the trajectory where the
formulation:~**1°~** Trajectory surface-hopping methods energy gap between the occupied and the target electronic
assume that the nuclear dynamics of the system may be apgte is greater than the maximum classically allowed nuclear

proximately described by an ensemble of noninteracting traénergy adjustment that is achievable by adjusting the mo-

mentum in the direction oh, i.e., a hop may be called for
dElectronic mail: truhlar@umn.edu when the nuclear momentum cannot be adjusted along
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such that total energy is conserved. Hopping attempts of thigerpreting the numerical result obtained in our previous
type are said to be “classically forbidden” or “frustrated.” study”® that was discussed above. The present paper de-
The presence of frustrated hopping ruins the self-consistencscribes a modification of the TFS algorithm that first identi-
built into the TFS method and can therefore lead to an incorfies if a frustrated hop is physically meaningful and is a
rect final electronic state distribution of trajectories. result of electronic state tunnelirigonsideration1)] or if a
Recently, we have systematically testedeveral vari- frustrated hop is not physically meaningful and is a result of
ants of the TFS method that have been proposed to deal withe improper treatment of electronic state decohergoae-
the problem of frustrated hopping. Unfortunately, none of thesideration(2)]. The method then allows trajectories that ex-
methods tested was completely satisfactory. In general, weerience physically meaningful frustrated hops to tunnel to a
found that the loss of self-consistency that results from frushearby classically allowed geometry and switch electronic
trated hopping causes the TFS method to significantly overstates. The new semiclassical trajectory method is called the
estimate the total probability of nonadiabatic quenching forfewest-switches with time uncertainifSTU) method and is
weakly coupled systems. Conversely, by artificially allowingidentical to the TFS method for classically allowed surface
all trajectories that experience classically forbidden hoppindiops.
attempts to switch electronic surfacésimulating a fully We tested the FSTU method against the TFS method on
self-consistent result the total probability of nonadiabatic a family of weakly coupled systerfisthat was designed to
quenching is significantly underestimated. This numerical rebe very sensitive to the treatment of classically forbidden
sult motivates the search for a modification of the TFShops. The results of these tests show that the nonlocal hop-
method that allows some but not all hops that are frustrate@ing (as in the FSTU methgds necessary for properly mod-
to somehow switch electronic states, and in the present pap€ling electronic transitions and accurately predicting the total

we describe such a method. nonadiabatic quenching probability and the product branch-
One can identify two limitations of the TFS semiclassi- ing ratio. .
cal trajectory approach that lead to frustrated hoppiry: The modification of the TFS method proposed here is

The TFS semiclassical trajectory approach algorithm doe§imilar in its aims to a recent attempt to modify the surface-
not allow tunneling into a new electronic state, #@ithe ~ hopping method that was proposed by Zatal,*** al-

TFS hopping probability does not properly treat electronicthough we each arrived at out starting point and our modifi-
state decoherendalso called dephasingThe first consider- ~ cations independently by separate routes. Both methods re-
ation (1) is a consequence of the classical trajectory apmove frustrated hopping by allowing nonlocal surface hops;
proach. The quantum-mechanical nuclear wave function of e two methods will be compared in more detail in Sec. V.
dynamical system may have a finite probability amplitude in ~ This paper is organized as follows: Section Il summa-
a region where classical trajectories are forbidden by energ?zes the important features of the model surfaces. The semi-
conservation. These quantum-mechanical “tails” mayinduceclassical calculations, including the details of the FSTU
physically meaningful electronic transitions in regions whereMethod, are described in Sec. Ill, and the results are pre-
surface hops are classically energetically forbidden, and thigénted in Sec. IV. The results are discussed and summarized
is a manifestation of tunneling. Within the classical trajectoryl" S€cs. V and VI, respectively.

approach these meaningful electronic state tunneling transi-

tions result in frustrated hops. The second considerd@opn

is a result of the formulation of the TFS hopping probability. ||. MODEL POTENTIAL ENERGY MATRICES

Specifically, the TFS method gives the fully self-consistent

electronic state populations at all times only for systems with ~ The YRH family?® of three-body potential energy matri-
degenerate electronic states, i.e., only when the ensembles @s(PEMS used to test the FSTU method models the nona-
trajectories that occupy different electronic states do nofliabatic scattering process of an electronically excited model
separate in phase space. Of course, realistic chemical sy¥-atom and a diatomic molecule RH:

tems fegture nondege_nerate electronic st_ates, often with . Y +RH(v",j") (R13
greatly disparate potential energy topographies. Nondegener- Y*+RH(v,j)— R+YH(v' i)’

; v',j") (R1b
ate potential energy surfaces lead to decoherent ensembles of
trajectories in each electronic stafél*>and this decoher- where the asterisk indicates electronic excitation, and the
ence results in a decreased probability of electronic transiprimes on the vibrationa) and rotational quantum num-
tion. The TFS formulation does not properly treat electronicbers indicate that these quantities are not necessarily con-
state decoherence, and therefore the TFS method overpreerved. The mass combination for the model atoms was cho-
dicts electronic transitions, especially in classically forbiddensen to be 10 and 6 amu for the Y and R atoms, respectively.
regions where classical trajectories cannot exist in the targéthe H atom has the mass of hydrogen, i.e., 1.007 83 amu.
electronic state. Details of the family of YRH surfaces are presented in an

The frustrated hops associated with) above are con- earlier work®® Briefly, the family of YRH surfaces is made
sidered physically meaningful in the fewest-switchesup of four members, and each member differs from the oth-
surface-hopping context and should be allowed to switcters only in the magnitude of the diabatic coupling. The maxi-
electronic states. The frustrated hops resulting fr@h  mum diabatic coupling for the four potential matrices dis-
above are not physically meaningful and should be ignoredcussed in the present work atd%”=0.20, 0.10, 0.03, and
These two considerations provide a reasonable means of i8-01 eV.
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As discussed below, the semiclassical trajectory calculaguantum-mechanical electronic state den8itft) (for all i)
tions were carried out in the adiabatic representation. Thgt the start of the simulation, trajectories switch surfaces ac-
adiabatic potential energy surfaces were obtained by diagQ:ording to Eq.(2), and all surface hops are allowed, then
nalizing the diabatic PEM. The adiabatic surfaces arg= () andP;(t) will be equal for allt. [Of course/F;(t) and
coupled by the scalar product of the velocity and the nonap (t) will not be exactlyequal due to the finite number of
diabatic coupling vectod."® As discussed elsewhet®one  trajectories in the computational ensembléa surface hop
can calculatel Without_ appro_ximation from the diabatic ma- 5 called for by Eq.(2) and the hop is frustrated, this self-
trix elements and their gradients. _ consistency will no longer be maintained. We note that the

The initial scattering conditions will be labeled by the presence of frustrated hops results in a “fewer-than-fewest-
shorthandE/eV, j) whereE/eV is the total energy in eV, and syjitches” method, and we will comment on this at the end of
j is the initial rotational quantum number of the RH diatom. gg¢_ v/

The initial vibrational quantum number of the RH diatom is The FSTU treatment of a frustrated hop is discussed

zero, and the total angular momentum is also zero. We Corkeyt. The time-energy version of the uncertainty prindple
sider a total of 12 test cases; for each of the four PEMs

discussed above, we consider three sets of initial conditions: AEAt=1%, €)
(1.10, 0; (1.10, 6; and(1.02, Q. may be interpreted as the system borrowing some enkEgy

for some timeAt. We incorporate this feature in the semi-
. SEMICLASSICAL TRAJECTORY CALCULATIONS classical theory by allowing a trajectofig(t) that experi-
AND TIME-UNCERTAINTY SWITCHING ences a frustrated hop to tunnel and hop successfully at some
ALGORITHM nearby geometry along(t) that it is classically allowed and

Semiclassical trajectory surface-hopping calculationé_’Vhere the ti_me that the trajector_y_ tunne_ls is within _the time
were carried out using version 6.6 of thexr computer intervalAt given by Eq.(3). Specifically, if a hop at time,
code*® Details of our implementation of the semiclassical 'S class_lcally forbldden, the trajectory Is assume.d. to hop at
trajectory algorithm including the selection of the initial con- SOMe timety, (if any such time EXIS?S that minimizes
ditions, the propagation of the classical trajectories, théto_th| subject to the following two crlFena(l) a hop is
implementation of the fewest-switches algorithm, and theflassically allowed aR(ty), and(2) the difference between
final-state analysis may be found elsewrel23Briefly, all  fo andt, satisfies
of the calculations reported here were carried out in the adia- Ito—ty| <H/2AE, @
batic representation, and the hopping vediorvas taken to

be a unit vector in the direction of the nonadiabatic couplingvhere the factor of introduced into Eq(4) ensures that the
vector d.'® This choice for h has been justified distribution of nonlocal hops arourtg will have a maximum

theoretically**"*”and numerically?* width of At given by Eq.(3). In Eq.(4), AE is the difference
The fewest-switches with time uncertaintfFSTU)  between the potential energy gapRit,) and the available
method is a modification of the TFS method that incorpo-kinetic energy along the hopping vector at titge i.e., AE
rates nonlocal hopping such that sothet not al) frustrated  is the energy that the trajectory would need to “borrow” in
hops are allowed to switch electronic states. The FSTLPrder to hop at,. Notice that the trajectory may hop non-
method is identical to the TFS method except when a trajedocally both forward and backward in time. For some frus-
tory experiences a frustrated hop. Specifically, the quantunirated hops these criteria cannot be satisfied, and these frus-
mechanical electronic state population deng¥yt) is ob-  trated hops are thought to be caused by the improper
tained by integrating the solution of the time-dependentreatment of decoherence effe¢s discussed in Secs. | and
Schradinger equation along the classical traject®(t), and V) and are ignored.
is given by (in the adiabatic representation for a two-state ~ Our development of the FSTU method is a culmination

system&27 of a series of studié523in which we have systematically
. o examined and tested several possible options and variations
Pi(t)=—2Rdajj(t)R(t)-d], (1) in the surface-hopping approach. This includes comparing

the original fewest-switches criterion for invoking a surface-
hopping decision to the Blais—Truhtar'®?%and generalized
Blais—Truhlat® criteria, comparing diabatic and adiabatic
representations for the electronic probability amplitude and
trajectory propagatioh:'8-??testing the effect of symme-
trizing the speed or coupling in computing the hopping
probability}'?* comparing various choices for the hopping
vector¥1>1testing the effect of rotating the hopping vector
y —P;(t) ot when the momentum component along the hopping vector is
Ph(t)=ma O’P— : (2 too small to allow a hoptt"*8%testing various combina-
i(0) tions of reflecting or ignoring hops when they are
where the system is currently occupying statendét is the  frustrated®® comparing energy-conserving to energy-
time interval between hopping decisions. If the fraction ofnonconserving methods for assigning final discrete quantum
trajectories in each electronic stakg(t) is equal to the numbers on the basis of the continuous final trajectory

where the overdot indicates a time derivative,j, a;; is the
cross term of the electronic state density maixg., P;
=a;), R is the velocity of the classical trajectony, is the
nonadiabatic coupling vector between stateend j, andi
=1 for the ground electronic state ane 2 for the excited
electronic state. The fewest-switcAéshopping probability
Py is computed fronP;(t)
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TABLE I. Mean unsigned relative errofMURES) for the TFS and FSTU methods averaged over 12 test cases.

Method Pe () (i) Po () (" Fs Py  Prob® MomP Al°

TFS 1.36 0.12 0.14 0.29 0.23 0.67 032 0.93 0.73 0.29 0.51
FSTU 0.73 0.17 0.14 019 038 091 016 0.67 0.44 0.40 0.42

éAverage MURE for the probabilitieBg, Po, Fr, andPy.

bAverage MURE for the momeni@ '), (j'), (v"), and(j").

‘Average MURE for all eight observables.

9The MURES for the TFS method were computed from the TFSF+) data in Ref. 23.

variablest416:23 and comparing histogram methods to times obtained by integrating the classical trajectories nu-
smooth sampling for assigning final discrete quantunmerically, and we checked that the FSTU results are well
numbers:11416.17.23 Consideration of what we learned in converged with respect to step size.

those studi¢d=23and from related worR****°not only mo-
tlvz_ited the pr_esent suggestion of an _|mproved_ fewestiv_ RESULTS
switches algorithm but also—very significantly—gives us

confidence that the improved performarisee below of the We tested the FSTU method on the four YRH systems
FSTU scheme is not simply the result of an unphysical canusing the three sets of initial conditions described in Sec. Il,
cellation of errors resulting from poor methodological deci-for a total of 12 test cases. Table | shows the mean unsigned
sions for the other aspects of the surface-hopping schemeelative error(MURE) of the vibrationalv and rotationalj

Our final recommendations for the best way to carry outmoments for the reactivésingle primes and nonreactive
surface-hopping calculations can be summarized as followslectronically quenche@ouble primey products, the prob-

(1) Choose hopping decision locations on the basis of thability of reactionPg, the probability of nonreactive elec-
fewest-switches with time uncertainty algorith(@) Choose  tronic quenchingPq, the total nonadiabatic quenching prob-
the electronic state representati@diabatic or diabaticby  ability Py=Pgr+Pq, and the product branching ratieg

the Calaveras Countycriterion.(3) Do not employ symme- =Pg/P,, obtained by averaging the unsigned relative er-
trization schemes4) Choose the hopping vector along the rors (URES for the 12 test cases. Also shown is the MURE
nonadiabatic coupling vector without rotatiad) If hops are  for the TFS method. The TFS semiclassical trajectory results
frustrated, ignore them(6) Assign electronic states accord- and the fully converged quantum-mechanical results used to
ing to the surface on which a trajectory finishes, and assigeompute the UREs were taken from Ref. 23. Note that of the
final vibrational and rotational quantum numbers by eitherseveral variants of the TFS method discussed in Ref. 23, we
the energy nonconserving histograilNH) method'*®!”  used the data for the TFS variant where all frustrated hop-
which gives a well defined error estimater the energy ping attempts were ignord@alled TFSt+,+) in Ref. 23.
nonconserving quadratic smooth samplingENQSS  Table | shows that nonlocal hoppingas in the FSTU
method*1"4®which may be significantly more accurate or method reduces the error in the reaction probability by a
give better statisticgbut without a well-defined error esti- factor of 1.9, the error in the quenching probability by a
mate, with the possibility in reserve that a more sophisti- factor of 1.5, the error in the product branching ratio by a
cated final-state algorithm may be needed when one is neéactor of 1.4, and the error in the total nonadiabatic probabil-
an energy threshold for a final state of interest. The combiity by a factor of 2, where all errors are MUREs. The
nation of all these choices defines the standard FSTU algdMURESs in the reactive moments are similar for the FSTU
rithm. In the present paper, all reported results were obtainednd TFS methods, whereas the FSTU method is less accurate
by the ENH scheme, but the ENQSS results are very similaby a factor of 1.5 for the quenching moments.

All calculations in the present paper were carried out  Table Il shows the UREs for the total nonadiabatic prob-
using the adaptive integration algorithm that we designed foability Py and the product branching rati, for each of the
fewest-switches surface-hopping calculations in a previoud?2 test cases. Féty, the FSTU method is less accurate than
papert’ This algorithm uses a Bulirsch—Stoer integrator withthe TFS method for only two of the 12 test cases, and in
polynomial extrapolatio®>®'and is specifically modified to these two cases both the FSTU and the TFS method have
prohibit the integrator from stepping over peaks and locasmall UREs. For the other ten test cases, the FSTU method is
minima in the electronic probabilitiéd.For the present cal- more accurate than the TFS method Ryr; the URE for the
culations the parametéfswere given the following values: FSTU method is smaller than the URE for the TFS method
eps=10"E, (1 E,=27.211 eV and h,,;,=10 % a.u. (1 by a factor of~2 for six cases, a factor of4 for two cases,
a.u=2.4189< 10 2 fs), which gives convergence for the and factors of 5.8 and 9.3 for the remaining two cases. For
TFS results. For the FSTU results, another consideratiothe product branching ratieg, the FSTU method is slightly
arises. In particular, we found that in typical cagé8AE is  less accurate than the TFS method for four of the 12 cases
only a few times larger than the step size required to con¢by an average factor in the UREs of .Eor the remaining
verge the integration of the coupled differential equationseight cases, the FSTU method is more accurate than the TFS
Thus, one may require a smaller step size for the integratiomethod in predictind=g; the URE inFg is smaller for the
to the final value of,, than for the rest of the propagation. In FSTU method by factors of 1.4—2.0 for six cases, and factors
the present application we selectgdrom a set of discrete of 3.0 and 4.9 for the remaining two cases.
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TABLE II. Unsigned relative error6URES for the TFS and FSTU methods for the 12 test cases.

Pn Fr
.Cc2 uEiev TFS FSTU TFS FSTU
(1.10,0 0.20 0.75 0.31 0.64 0.33
0.10 0.18 0.05 0.48 0.28
0.03 0.49 0.08 0.31 0.10
0.01 0.43 0.24 0.14 0.15
(1.10, 6 0.20 0.15 0.06 0.47 0.33
0.10 0.41 0.26 0.61 0.66
0.03 0.05 0.10 0.39 0.49
0.01 0.05 0.09 0.41 0.49
(1.02, 0 0.20 0.91 0.58 0.32 0.07
0.10 0.11 0.06 3.23 2.32
0.03 0.21 0.06 1.93 1.30
0.01 0.16 0.02 2.25 151
Mearf 0.32 0.16 0.93 0.67

4nitial conditions are specified in Sec. II.
PAverage of 12 cases.

Shown in Table Il is the average final value of the self-consistent fewest-switches result. These values agree
quantum-mechanical ground electronic-state probability denvery well with (P,(t=2°)), but do not agree with the accu-
sity [i.e., P;(t=) averaged over all the trajectories in the rate quantum-mechanical values of the total nonadiabatic
ensembl¢ for each of the 12 test cases and for both thequenching probabilit;PS’\", also shown in Table IlI.

FSTU and TFS methods. Also shown is the fraction of tra-

jectories that finished the simulation in the ground electroni

state[note thatPy=F,(t=)]. The FSTU method retains V. DISCUSSION

more self-consistency in the fewest-switches algorithm than  The TFS method is formulated such that surface hops are
the TFS methodi.e., Py is closer to{P,(t=x)) for the  minimized, and this “fewest-switches” formulation is ac-
FSTU methogl Also shown in Table Il is the probability complished by allowing surface hops only when there is a
(f) that a trajectory experienced a frustrated hop and finnet flow of electronic state probability density out of the
ished the simulation in the ground electronic state. Thecurrently occupied electronic state during the interval be-
FSTU method(by design has less frustrated hopping than tween hopping decisions. The presence of classically forbid-
the TFS method by an average factor of 1.5. den electronic transitions destroys the self-consistency built

The product ofPy and (1—f) (where 1-f is the prob- into the TFS method, and results in a “fewer-than-fewest-
ability that a trajectory finished the simulation in the groundswitches” method. We note, however, that a fully self-
electronic state and didot experience a frustrated hpjs  consistent fewest-switches algoritHie., Py~(P,(t=x))
tabulated in Table 11l and gives a rough estimate of the fullyin Table Ill] would greatly underestimate the accurate total

TABLE Ill. The quantum mechanical total nonadiabatic quenching probatﬂw, final ground electronic state probability density averaged over the
ensemble of classical trajectorig, (t=)), and the total nonadiabatic quenching probabiityand frustrated hopping probabilifyfor the TFS and FSTU
methods.

TFS FSTU
I.Cca UT®jev pRM b (Py(t=00))° Pu f (1-1)Py Py f (1-f)Py
(1.10, 0 0.20 5.742)° 3.482) 9.872) 0.73 2.672) 7.51(2) 0.64 2.672)
0.10 3.992) 1.802) 4.872) 0.65 1.722) 3.8002) 0.55 1.722)
0.03 4.103) 1.21(3) 5.71(3) 0.60 2.263) 4.443) 0.49 2.263)
0.01 4.344) 2.794) 6.934) 0.59 2.874) 5.404) 0.47 2.874)
(1.10, 6 0.20 1.621) 1.591) 1.971) 0.39 1.201) 1.731) 0.31 1.201)
0.10 9.072) 1.11(2) 1.271) 0.29 9.0%2) 1.151) 0.21 9.0%2)
0.03 1.592) 1.322) 1.572) 0.28 1.142) 1.422) 0.20 1.142)
0.01 1.8%3) 1.483) 1.873) 0.27 1.373) 1.663) 0.18 1.313)
(1.02, 0 0.20 4.972) 5.082) 9.662) 0.64 3.512) 7.842) 0.55 3.512)
0.10 3.442) 1.992) 3.992) 0.60 1.612) 3.242) 0.50 1.612)
0.03 3.713) 2.933) 4.21(3) 0.56 1.863) 3.4903) 0.47 1.863)
0.01 4.214) 2.794) 5.044) 0.55 2.264) 4.144) 0.45 2.264)

dnitial conditions are specified in Sec. II.

PAccurate quantum-mechanicBl, ; these values are taken from Ref. 23.

“Average value of the ground-state electronic probability density, averaged over all trajectories in the ensemble. This value is found to bertieesaRt f
and FSTU methods for the number of figures presented.

Note that 5.74(235.74< 1072
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nonadiabatic quenching probabilitPS™. The fact that semiclassical trajectory scheme by modifying the equations
pSM¢<p1(t:o@)> points out the serious problem in the for calculating a;; along the classical trajectory. Such a
semiclassical trajectory formalism that was mentioned earSCheme, however, would still feature ClaSSica.“y frustrated
lier. Namely, the electronic state population dend®yt) hopping as a result of the electronic state tunneling discussed
given by Eq.(1) does not properly include electronic state above. The FSTU is a desirable practical alternative to an
decoherence effects. A proper treatment of decoherenc@xplicit treatment of decoherence effects because it is a
within the semiclassical trajectory approach would requireSimple extension of the TFS method. Its usefulness is further
that the electronic state density cohereagedepend on all Just|f|ed_ numerically in the present study, as it is shown to
of the trajectories in the ensemble, and thus would requir@réatly improve the accuracy of the fewest-switches method.
simultaneous propagation of the entire ensemble of The present formulation of the FSTU method is simple
trajectorie€252 This would increase the computational com- @nd straightforward, but it is not unique. For example, the
plexity and cost of the surface-hopping algorithm, and weuncertainty relatlgn in Eq3) is strictly an mequlallty, e_md_we_
therefore restrict our attention to the independent trajector)g’m therefore write the FSTU nonlocal hopping criterion in
approach. q.(4) as

Qne effect of the Iack_of proper t_reatment of _the elec- Ity—ty| <XA/2AE, (5)
tronic state decoherence in the semiclassical trajectory ap-
proach is that the electronic state coherence tefntom-  wherex is some number greater than or equal to 1. It is
puted for each independent trajectory does not properly go tpatural to takex=1 (as in the FSTU methodbut we also
zero when the ensembles of trajectories in the two electronitested several variants of the FSTU method with different
states andj separate in phase space. If for some fully deco-values ofx, namelyx=2, 4, 10, and» (wherex=0 is, of
herent trajectoryy;; is nonzero, there will be a flow of elec- course, the TFS methpdWe found that the value of=1
tronic state density(hopping between electronic states, gives the best agreement with the accurate quantum-
whereas an accurate treatmentagfwould givea;;=0 and  mechanical results.
would damp out theséoften frustrated electronic transi- For some systems, it may be necessary to devise more
tions, as can be seen from Ed4) and (2). The improper complicated schemes for introducing nonlocal hopping into
treatment of decoherence can have serious effects anywhettee fewest-switches algorithm such as alternate definitions of
along the classical trajectory, but we note that a dramatid E or allowing trajectories to tunnel in some direction other
example of this problem occurs when the unoccupied electhan along the classical trajectofgay, along the nonadia-
tronic state is too high in energy to be occupied by anybatic coupling vector The FSTU method performs well
classical trajectories. When this is the case, there will be navithout greatly increasing the complexity of the surface-
trajectories directly “above” the ensemble of ground-statehopping algorithm, and we did not test the more complicated
trajectories, and; should therefore be nearly zero. As men- schemes mentioned above. We did consider allowing trajec-
tioned above, the independent semiclassical trajectory valu®ries to hop at any timéot just the closest time t) that
of a;; may not be zero, and a trajectory on the lower potentiakatisfies the FSTU nonlocal hopping criteria in Sec. IlI by
energy surface may therefore experience a frustrated hop thoosing between each time that satisfies these criteria with
this region where a proper treatment of the decoherencsome probability. We found, however, that this modification
would have predicted no hops at all. had no significant effect on the values of the observables,

From these considerations alone, one may be motivatednd we can explain this by noting that the average value of
to ignore all frustrated hopping as being caused by the lack/2AE is much less than the characteristic time scales of the
of the proper treatment of the decoherence of divergent trasystem. Therefore, resolving the hopping time within the
jectories. We have shown, however, that ignoring all frus-%/2AE interval has little effect on the overall dynamics.
trated hopping(as in the TFS methgdeads to systematic It is interesting to note that the problem of frustrated
errors in the total nonadiabatic quenching probabffitfhe  hopping has been addressed recéffifusing nonlocal hop-
FSTU method, by allowing some frustrated hopping attemptping within the Landau—Zener trajectory surface-hopping
to become successful nonlocal hops, greatly reduces theseheme. The Landau—Zener trajectory surface-hopping
errors, as shown in Sec. IV. The FSTU method may be jusscheme allows electronic transitions whenever a classical tra-
tified by noting that a quantum-mechanical nuclear wavgectory crosses some predefined hopping seam, and the hop-
function will have tails that extend into regions that are in-ping probability is computed from the electronic-state ener-
accessible to classical trajectories. These tails lead to elegies at the seam and the component of the nuclear
tronic state population transfer in classically forbidden re-momentum perpendicular to the hopping seam. 2hal.
gions and therefore may induce frustrated hopping in théave proposed an elegant metfittf (which we will call the
TFS algorithm, whereas this kind of hop is allowed by theZNN method that incorporates nonlocal hopping into the
FSTU method by incorporating nonlocal hopping into theLandau—Zener surface-hopping formalism. Specifically,
fewest-switches formalism. The maximum “nonlocality” of frustrated hops are removed by allowing trajectories to tun-
a hop in the FSTU method corresponds to the approximatael perpendicular to the hopping seam. The ZNN method
extension of the quantum-mechanical tails into the classiwas shown to greatly improve the semiclassical trajectory
cally forbidden regions as estimated by Ed4). results for the cases to which it was applied.

Ideally, one would develop a method that incorporates  We note that the ZNN method differs from the FSTU
the proper treatment of decoherence into the independembethod in several important ways. First, a FSTU trajectory,
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like a TFS trajectory, may experience a hopping attempt anymethod does the number of hopscrease such that the
where along the classical trajectory and not only at a premethod becomes the fewest-switches method as it was origi-
defined hopping seam. We consider this to be essential farally formulated. The FSTU method is, in fact, closer than
modeling many kinds of nonadiabatic systems, and hence wiae TFS method to the fewest-switches fully self-consistent
are only interested in the further development of methodsesult.

with this generality. Second, the FSTU hopping probabilities

are determined by integrating the time-dependent Schrovl. CONCLUSIONS

dinger eqqation alon:q' fche classical trajef:tory, whereas the " \we have described a new method for treating classically
ZNN _hoppmg probabilities are-based on _|r.1f_ormat|on at e hidden electronic transitions in trajectory surface-hopping
hopping seam. The ZNN hopping probabilities therefore docalculations; the new method is called the fewest-switches

not suffer from the decoherence problem discussed here fQr.. time uncertainty(FSTU) algorithm. The FSTU method

the TFS method, at least when the assu_mpnons L_mderly'nﬁlnproves the self-consistency of the fewest-switches algo-
the Landau—Zener-type treatment are satisfied. Third, FSTW 1 \we tested the FSTU method using a set of 12 three-
trajectories tunnel along the classical trajectorytime for 1,4y two-state test cases that were designed to provide sen-
some time that is no greater than that allowed by the unceigjjye tests of methods for treating weakly coupled highly
tainty principle, whereas the ZNN trajectories tunnel o505 systems, and hence provide a challenging test of
spaceperpendicular to the hopping seam and are not limitéqyethods for correcting the problem of frustrated hopping.

in their tunneling distance. We found that the new formalism greatly increases the accu-

Other methods that delocalize the intersurface transition'ﬁﬂCy of the total nonadiabatic quenching probability and the
are the full multiple spawning methd@2°which is based on product branching ratio,

the semiclassical propagation of Gaussian wave packets,
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